next up previous contents
Next: Handling the local and Up: Going from the frequency Previous: Solution 2: Special relativity   Contents

Solution 3: Special relativity is used to define both \ensuremath{v_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{obs}}}} and \ensuremath{\delta \ensuremath{v_{\ensuremath{\mathrm{}}}^{\ensuremath{\mathrm{obs}}}}}

If special relativity is used to define \ensuremath{v_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{obs}}}}, we would have a more consistent solution by linearizing the above equation at $x=-\ensuremath{v_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{obs}}}}/\ensuremath{c}$. It is easy to yield

\begin{displaymath}
\ensuremath{v_{\ensuremath{\mathrm{}}}^{\ensuremath{\mathrm...
...{d_{\ensuremath{\mathrm{sys}}}^{\ensuremath{\mathrm{obs}}}}}}.
\end{displaymath} (48)

I still need to check how the accuracy of the linearization is improved.



Gildas manager 2015-03-19