
IRAM Memo 2011-3

CLASS User Section

S. Bardeau1, J. Pety1,2, S. Guilloteau3

1. IRAM (Grenoble)
2. LERMA, Observatoire de Paris
3. LAB, Observatoire de Bordeaux

May, 15th 2013
Version 1.1

Abstract

CLASS is a state-of-the-art GILDAS1 software for reduction and analysis of (sub)–millimeter
spectroscopic data. Up to now, the CLASS data format could only describe a predetermined number
of parameters in the observation headers, these parameters being grouped in 17 sections (e.g. the
general, spectroscopic or calibration sections). However, the possibility to add telescope-specific infor-
mation to the CLASS data format was requested several time. Instead of introducing a per-telescope
specific and fixed section, we thus decided to introduce a new flexible section, named User Section.
This document describes the functionalities available to the end-users as well as the implementation
steps which must be developed by the section owner.

Revisions:

• 1.0 (06-jul-2011): first release

• 1.1 (15-may-2013): added hook to command FIND

1http://www.iram.fr/GILDAS

1

CLASS User Section Contents

Contents

1 Basic description and functionalities 3

2 Adding a user subsection to an observation 3
2.1 Example . 3
2.2 Detailed API . 5

3 Reading a user section from an observation 6

4 Adding hooks to the Class commands 6
4.1 User hook for command DUMP . 6

4.1.1 Example . 6
4.1.2 API . 8

4.2 User hook for command SET VARIABLE USER . 9
4.2.1 Example . 9
4.2.2 API . 10

4.3 User hook for command FIND . 11
4.3.1 Example . 11
4.3.2 API . 13

4.4 API summary . 13

5 Extending the standard CLASS capabilities 15

6 Backward compatibility 15

7 Portability 16

8 Conclusion 16

A Implementation details for CLASS developers 17

2

CLASS User Section 1. basic description and functionalities

1 Basic description and functionalities

A user section is now part of the CLASS data format. It can be added to the observations by any external
program which is linked with the CLASS library and which uses the CLASS API.

The user section is composed of a basic owner and data descriptor, and of a data block. The content and
length of the data is controlled by the section owner, but for a few restrictions described in this document.
The data block is untyped, which means that the standard CLASS program is not able to understand it
natively. Only its owner is able to do so with the appropriate decoding routines. On the other hand, the
standard CLASS program is able to detect, load and propagate the User Section when possible. CLASS
can also find all the observations containing a user section. However, users and programmers should be
aware that there are CLASS operations under which the user section loose its meaning (for example
AVERAGE’ing). These operations thus do not propagate the user function.

More precisely, the User Section can store several user subsections. Each of these is identified by a
unique owner and title pair of values. The CLASS library will properly read and write in the correct
subsection as long as the program has declared properly which one it owns. Each subsection has its own
version number to enable the evolution of the data format (Note that abuse of the versioning mechanism
may slow down operations on this section).

We also provide code hooks which enable external programs to work on the user sections when a few
usual CLASS commands are called. These commands are WRITE, GET, DUMP, SET VARIABLE USER, FIND.

2 Adding a user subsection to an observation

In order to add a new user subsection to an observation, the external program has first to define a Fortran
derived type containing the data. Scalar or 1D-array values of types INTEGER(4), REAL(4) and REAL(8)
are supported. Scalar CHARACTER(LEN=*) strings are also supported, but their length must be a multiple
of 4. The component names, their number, and their order is defined by the programmer. The derived
type used by the external program does not need to have a Fortran sequence statement: the way its
elements are ordered in memory is also free.

The external program can add its user section to an observation in 3 steps:

1. tell CLASS which subsection it owns thanks to the subroutine class user owner,

2. declare with class user toclass the subroutine which knows how to order and transfer to CLASS
the user data,

3. finally send the data to CLASS with the subroutine class user add (for a new user subsection) or
class user update (if the subsection already exists).

The 2 first steps can be done only once, while the last has to be repeated each time a new user section
has to be added. The transfer subroutine declared at step 2 is mandatory to indicate to CLASS which
elements are present in the data and in which order they have to be written.

2.1 Example

The following program adds a new Usec Section to a CLASS observation. A more realistic program would
open an output file and write the observation into it. The data here contains dummy values and names
for the example.

module mytypes
type :: owner_title_version
integer(kind=4) :: datai4
real(kind=4) :: datar4

3

CLASS User Section 2. adding a user subsection to an observation

real(kind=8) :: datar8
character(len=4) :: datac4

end type owner_title_version
end module mytypes

program myprog
use class_types
use class_user_interfaces
use mytypes
external :: toclass
type(observation) :: obs
type(owner_title_version) :: mydata
integer(kind=4) :: version
logical :: error
!
! 1) Fill the data
mydata%datai4 = 111
mydata%datar4 = 222.
mydata%datar8 = 333.
mydata%datac4 = ’ABCD’
!
! 2) Tell Class who I am
call class_user_owner(’OWNER’,’TITLE’)
!
! 3) Declare my transfer subroutine
call class_user_toclass(toclass)
!
! 4) Fill the User Section in the observation
version = 1
error = .false.
call class_user_add(obs,version,mydata,error)
if (error) stop
!

end program myprog

subroutine toclass(mydata,version,error)
use class_user_interfaces
use mytypes
!---
! Transfer and order the input ’mydata’ object to the internal Class
! data buffer.
!---
type(owner_title_version), intent(in) :: mydata !
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag
!
if (version.ne.1) then
print *,’TOCLASS: Unsupported data version ’,version
error = .true.
return

endif
!
call class_user_datatoclass(mydata%datai4)

4

CLASS User Section 2. adding a user subsection to an observation

call class_user_datatoclass(mydata%datar4)
call class_user_datatoclass(mydata%datar8)
call class_user_datatoclass(mydata%datac4)
!

end subroutine toclass

2.2 Detailed API

The following subroutines are part of the Class User Section API. The interface module named class user interfaces
MUST be used in the calling program or subroutines:

• Declare the owner and title of the User Subsection:

subroutine class_user_owner(sowner,stitle)
character(len=*), intent(in) :: sowner ! Section owner
character(len=*), intent(in) :: stitle ! Section title

• Declare the user’s transfer routine

subroutine class_user_toclass(usertoclass)
external :: usertoclass ! User’s ’toclass’ subroutine

• Send a variable to the data buffer in CLASS:

subroutine class_user_datatoclass(var)
integer(kind=4), intent(in) :: var

OR real(kind=4), intent(in) :: var
OR real(kind=8), intent(in) :: var
OR character(len=*), intent(in) :: var

• Add the User Subsection to an observation:

subroutine class_user_add(obs,sversion,sdata,error)
type(observation), intent(inout) :: obs ! Observation
integer(kind=4), intent(in) :: sversion ! Version number
type(), intent(in) :: sdata ! The user data
logical, intent(inout) :: error ! Logical error flag

• Update the User Subsection in the input observation:

subroutine class_user_update(obs,sversion,sdata,error)
type(observation), intent(inout) :: obs ! Observation
integer(kind=4), intent(in) :: sversion ! Version number
type(), intent(in) :: sdata ! The user data
logical, intent(inout) :: error ! Logical error flag

Finally, the calling sequence of the user’s transfer routine must be of the following form:

subroutine toclass(data,version,error)
type(), intent(in) :: data ! The data to be transfered to Class
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag

5

CLASS User Section 3. reading a user section from an observation

The name of this subroutine is to be defined by the user. The data type can be of any kind provided
by the user. The purpose of this routine is to send the data elements to CLASS in a given order. The
advantage of this mechanism is to leave CLASS compute the whole data size and store it as its will. The
counterpart is that the order must be then exactly respected in the other parts of the user code, e.g. in
the reading subroutine fromclass defined hereafter. Furthermore, the CLASS API does not allow to
read only one element in the data.

3 Reading a user section from an observation

When the observation which is read from a file contains a user section, CLASS will load it entirely (i.e. all
the subsections it may contain). The data block of each subsection is loaded “as is” in memory. Nothing
more is done at read time.

4 Adding hooks to the Class commands

The key point is now: “How users can access the user subsection in the context of CLASS commands?”.
Let’s take the command DUMP as first example.

4.1 User hook for command DUMP

The command DUMP displays the content of one or all sections of the R buffer. When CLASS finds a user
section to dump, it can display the information it knows about each subsection. What it can not do is
guessing what the data block contains.

If the section owner wants to tell CLASS how to dump its subsection, it has to:

1. tell CLASS which subsection it owns with class user owner. This is optional if it has been done
elsewhere.

2. declare to CLASS with class user dump a subroutine which is able to display what is in the data
block.

If CLASS tries now to DUMP the user section, it will loop over all the subsections it contains. If one
matches the owner+title couple, it will put the data block in a specific place, and then call user’s dump
subroutine. This subroutine will then just have to translate back the data block to its own data type.

This last point must be fulfilled by a subroutine exactly symmetric to the transfer routine used at write
time, i.e. elements should be reread in the same order they have been written.

4.1.1 Example

If no user hooks have been declared, the output of the command DUMP /SECTION USER will be (with the
example shown in the previous section):

USER --
Number of subsections: 1
User Section # 1
Owner: OWNER
Title: TITLE
Version: 1
Data length: 5
Data:
(can not dump)

6

CLASS User Section 4. adding hooks to the class commands

CLASS claims it is not able to understand the content of the data buffer in the User Subsection.

The following subroutines show basically what should be done by the section owner to allow CLASS
to DUMP a specific user section:

subroutine mydump_init
!--
! Preliminary declarations
!--
!
! 1) Tell Class who I am
call class_user_owner(’OWNER’,’TITLE’)
!
! 2) Declare my dumping routine
call class_user_dump(mydump)
!
! Nothing more: return and wait for Class to ask for my User
! Subsection dump.
!

end subroutine mydump_init

subroutine mydump(version,error)
use mytypes
!---
! Dump to screen my User Subsection
!---
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag
! Local
type(owner_title_version) :: mydata
!
call fromclass(mydata,version,error) ! Read the Class buffer and fill mydata
if (error) return
!
! Display to screen
print *," datai4 = ",mydata%datai4
print *," datar4 = ",mydata%datar4
print *," datar8 = ",mydata%datar8
print *," datac4 = ",mydata%datac4
!

end subroutine mydump

subroutine fromclass(mydata,version,error)
use mytypes
use class_user_interfaces
!---
! Transfer the data values from the Class data buffer to the ’mydata’
! instance.
!---
type(owner_title_version), intent(out) :: mydata !
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag
!

7

CLASS User Section 4. adding hooks to the class commands

if (version.ne.1) then
print *,’FROMCLASS: Unsupported data version ’,version
error = .true.
return

endif
!
call class_user_classtodata(mydata%datai4)
call class_user_classtodata(mydata%datar4)
call class_user_classtodata(mydata%datar8)
call class_user_classtodata(mydata%datac4)
!

end subroutine fromclass

With these subroutines, CLASS is now able to ask for a translation of the User Subsection. The
output of the command DUMP /SECTION USER will be:

USER --
Number of subsections: 1
User Section # 1
Owner: OWNER
Title: TITLE
Version: 1
Data length: 5
Data:
datai4 = 111
datar4 = 222.00000
datar8 = 333.00000000000000
datac4 = ABCD

4.1.2 API

The following subroutines have to be used to declare user’s dump subroutine:

• Declare the user’s dump routine:

subroutine class_user_dump(userdump)
external :: userdump ! User’s ’dump’ subroutine

• Get a variable from the data buffer in CLASS:

subroutine class_user_classtodata(var)
integer(kind=4), intent(out) :: var

OR real(kind=4), intent(out) :: var
OR real(kind=8), intent(out) :: var
OR character(len=*), intent(out) :: var

The calling sequence of the user’s dump routine must be of the following form:

subroutine mydump(version,error)
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag

The name of this subroutine is free.

8

CLASS User Section 4. adding hooks to the class commands

4.2 User hook for command SET VARIABLE USER

If CLASS knows about a User Subsection owner and title when SET VARIABLE USER is invoked, it can
instantiate the SIC variables which describe the data of this subsection. This is be done if the associated
hook has been defined and declared to CLASS. The steps to do so are, as usual:

1. tell CLASS which subsection it owns with class user owner. This is optional if it has been done
elsewhere.

2. declare to CLASS with class user setvar a subroutine which is able to instantiate the SIC vari-
ables associated to the User Subsection.

The subroutines class user def inte, class user def real and class user def dble and class user def char
will create respectively an integer*4, real*4 and real*8 and character string in R%USER%OWNER% (where OWNER
is the owner previously declared). The subroutines order must match the order the data was written in
the User Section buffer.

The calling sequence of these subroutines is described in the following sections. The suffix name of the
SIC variable is given as first argument, e.g. FOO for R%USER%OWNER%FOO. The arguments ’ndim’ and ’dims’
describe the variable dimensions, but only scalars and 1D-arrays are currently supported (ndim=0 or 1).
For the character variables, ’strlen’ is the string length which has to be read from the buffer.

Note that once it has been instantiated, the SIC structure R%USER%OWNER% will be updated each time
the data changes (e.g. after a GET NEXT).

4.2.1 Example

When CLASS does not know about the User Subsection, it will not accept to instantiate the SIC structure
R%USER%:

LAS90> set variable user
E-SETVAR, No user function set for SET VAR USER
LAS90> exa r%user%
E-EXAMINE, No such variable R%USER

The following subroutines show basically what should be done by the section owner to allow CLASS
to instantiate SIC variables pointing to the User Subsection when the command SET VARIABLE USER is
invoked.

subroutine mysetvar_init
!--
! Preliminary declarations
!--
!
! 1) Tell Class who I am
call class_user_owner(’OWNER’,’TITLE’)
!
! 2) Declare my instantiation routine
call class_user_setvar(mysetvar)
!
! Nothing more: return and wait for Class to ask for my User
! Subsection instantiation.
!

end subroutine mysetvar_init

subroutine mysetvar(version,error)
use mytypes

9

CLASS User Section 4. adding hooks to the class commands

!---
! Define SIC variables in the structure R%USER%OWNER% which map the
! subsection content.
!---
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag
! Local
logical :: error
integer(kind=4) :: ndim,dims
!
error = .false.
ndim = 0
call class_user_def_inte(’DATAI4’,ndim,dims,error)
call class_user_def_real(’DATAR4’,ndim,dims,error)
call class_user_def_dble(’DATAR8’,ndim,dims,error)
call class_user_def_strn(’DATAC4’,ndim,dims,error)
if (error) return
!

end subroutine mysetvar

With these routines, CLASS is now able to instantiate the SIC variables:

MYPROG> set variable user
MYPROG> exa r%user%
R%USER% ! Structure GLOBAL
R%USER%OWNER%DATAC4 = ABCD ! Character*4 GLOBAL RO
R%USER%OWNER%DATAR8 = 333.0000000000000 ! Double GLOBAL RO
R%USER%OWNER%DATAR4 = 222.0000 ! Real GLOBAL RO
R%USER%OWNER%DATAI4 = 111 ! Integer GLOBAL RO
R%USER%OWNER ! Structure GLOBAL

4.2.2 API

The following subroutines have to be used in order to instantiate SIC variables in the structure R%USER%.

• Declare the user’s subroutine for variables instantiation:

subroutine class_user_setvar(usersetvar)
external :: usersetvar

• Instantiate a SIC variable in R%USER%OWNER% (numeric types, respectively integer*4, real*4 and
real*8). Only scalars (ndim=0) and 1D-arrays (ndim=1) are currently supported.

subroutine class_user_def_inte(suffix,ndim,dims,error)
character(len=*), intent(in) :: suffix ! Component name
integer(kind=4), intent(in) :: ndim ! Number of dimensions (0=scalar)
integer(kind=4), intent(in) :: dims(4) ! Dimensions (unused if scalar)
logical, intent(inout) :: error ! Logical error flag

subroutine class_user_def_real(suffix,ndim,dims,error)
character(len=*), intent(in) :: suffix ! Component name
integer(kind=4), intent(in) :: ndim ! Number of dimensions (0=scalar)
integer(kind=4), intent(in) :: dims(4) ! Dimensions (unused if scalar)
logical, intent(inout) :: error ! Logical error flag

10

CLASS User Section 4. adding hooks to the class commands

subroutine class_user_def_dble(suffix,ndim,dims,error)
character(len=*), intent(in) :: suffix ! Component name
integer(kind=4), intent(in) :: ndim ! Number of dimensions (0=scalar)
integer(kind=4), intent(in) :: dims(4) ! Dimensions (unused if scalar)
logical, intent(inout) :: error ! Logical error flag

• Instantiate a SIC variable in R%USER%OWNER% (scalar character strings).

subroutine class_user_def_char(suffix,lstring,error)
character(len=*), intent(in) :: suffix ! Component name
integer(kind=4), intent(in) :: lstring ! String length
logical, intent(inout) :: error ! Logical error flag

The calling sequence of the user’s instantiation routine must be of the following form:

subroutine mysetvar(version,error)
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(inout) :: error ! Logical error flag

The name of this subroutine is free.

4.3 User hook for command FIND

The CLASS command FIND allows the user to make a custom selection from the Input indeX (IX: input
file summary), building then the Current indeX (CX). This is done through the option /USER. If CLASS
knows about a User Subsection owner and title, then a hook can be executed in order to make a custom
search depending on this User Subsection contents. The basic steps to be done by the Subsection owner
are:

1. tell CLASS which subsection it owns with class user owner. This is optional if it has been done
elsewhere.

2. declare to CLASS with class user find a subroutine which will parse the FIND /USER arguments,

3. declare to CLASS with class user fix a subroutine which will make the selection depending on
the command line arguments and the Subsection contents.

4.3.1 Example

When CLASS does not know about the User Subsection, it will not accept to make a custom user selection:

LAS90> FIND /USER
E-USER_SEC_FIND, No user function for FIND /USER

The following subroutines show basically what should be done by the section owner to allow CLASS
such custom selections. Note that this is divided into 2 main steps. The command line parsing is first
called. For efficiency, this is done only once at the beginning of the command execution. Then CLASS
loops on all the observations in the Input indeX and calls repeatedly the selection subroutine.

subroutine myfind_init
!--
! Preliminary declarations
!--
!
! 1) Tell Class who I am

11

CLASS User Section 4. adding hooks to the class commands

call class_user_owner(’OWNER’,’TITLE’)
!
! 2) Declare my command line parsing subroutine
call class_user_find(myfind)
!
! 3) Declare my selection subroutine
call class_user_fix(myfix)
!
! Nothing more: return and wait for Class to execute FIND /USER.
!

end subroutine myfind_init

subroutine myfind(arg,narg,error)
use gkernel_interfaces
use mymod
!---
! Hook to command:
! LAS\FIND /USER [Arg1] ... [ArgN]
! Command line parsing: retrieve the arguments given to the option.
!---
integer(kind=4), intent(in) :: narg ! Number of arguments
character(len=*), intent(in) :: arg(narg) ! Arguments
logical, intent(inout) :: error ! Logical error flag
! Local
integer(kind=4) :: iarg
!
! Here you have to parse and save the selection criteria given to
! the command line. We assume here they are saved in a float array
! ’mycriteria’ provided by the module ’mymod’
mycriteria(:) = 0.0 ! Initialization
!
do iarg=1,narg
! Use Gildas kernel parsing subroutines (convert string to REAL*4)
call sic_math_real(arg(iarg),len(arg(iarg)),mycriteria(iarg),error)
if (error) return

enddo
!

end subroutine myfind

subroutine myfix(version,found,error)
use mymod
use mytypes
!---
! Hook to command:
! LAS\FIND /USER
! Find or not according the User Subsection contents. Called only if
! the observation has a user section and it matches the one
! declared here.
! NB: ’FIX’ stands for "Find in Input indeX"
!---
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(out) :: found ! Selected or not selected?
logical, intent(inout) :: error ! Logical error flag

12

CLASS User Section 4. adding hooks to the class commands

! Local
type(owner_title_version) :: mydata
!
call fromclass(mydata,version,error) ! Read the Class buffer and fill mydata
if (error) return
!
! Use the criteria saved in ’myfind’ e.g.
found = mydata%r4.gt.mycriteria(1) .and. mydata%r8.lt.mycriteria(2)
!

end subroutine myfix

With these routines, CLASS is now able make a custom search in the input index:

MYPROG> find ! Find everything
I-FIND, 15504 observations found
MYPROG> find /user 1.0 2.0 ! Find with some user selection
I-FIND, 224 observations found

The option /USER can be combined with other selection criteria (e.g. FIND /SOURCE MYSOURCE /USER
1.0); as usual the result is the intersection of all the selections. If FIND /USER is invoked but the User
Subsection is absent or is not owned by the program, the observation is not selected to the Current indeX2.

4.3.2 API

The following subroutines have to be used to declare user’s find subroutine:

• Declare the user’s dump find routines:

subroutine class_user_find(userfind)
external :: userfind ! User’s ’find’ subroutine (command line parsing)

subroutine class_user_fix(userfix)
external :: userfix ! User’s ’find’ subroutine (selection)

The calling sequence of the user’s find routines must be of the following form:

subroutine userfind(arg,narg,error)
integer(kind=4), intent(in) :: narg ! Number of arguments
character(len=*), intent(in) :: arg(narg) ! Arguments
logical, intent(inout) :: error ! Logical error flag

subroutine userfix(version,found,error)
integer(kind=4), intent(in) :: version ! The version of the data
logical, intent(out) :: found ! Selected or not selected?
logical, intent(inout) :: error ! Logical error flag

The name of these subroutines is free.

4.4 API summary

The table 1 describes the general hooks to be used in order to read or write the User Section. They have
to be considered as prerequisites before doing anything with this section in CLASS.

The table 2 describe the hooks to be used when adding a User Section to an observation (e.g. before
writing it to the output file).

Finally the table 3 summarizes the subroutines which can be used to declare the hooks to some CLASS
commands, plus some subroutines which are useful for some of them.

2Remember that Class provides natively the option FIND /SECTION USER which finds all observations providing a
User Section, independently from any hook.

13

CLASS User Section 4. adding hooks to the class commands

Table 1: General hooks
Subroutine Purpose

class user owner declare who is the owner and what is the title of the subsection the
hooks can read or write

Table 2: Writing hooks
Subroutine Purpose

class user add add a new user subsection to the input observation
class user update update a user subsection which already exists
class user toclass declare the subroutine which will write the data to the Class internal

buffer
class user datatoclass transfer a scalar or 1D-array value to the Class internal buffer (generic

subroutine)

Table 3: Reading hooks
Subroutine Purpose

class user dump declare the hook for the command DUMP

class user find declare the hook for the command FIND /USER (command line parsing)
class user fix declare the hook for the command FIND /USER (selection)
class user setvar declare the hook for the command SET VARIABLE USER

class user classtodata read a scalar or 1D-array value from the Class internal buffer (generic
subroutine)

class user def inte create an integer*4 SIC variable in the structure R%USER%OWNER%

class user def real create a real*4 SIC variable in the structure R%USER%OWNER%

class user def dble create a real*8 SIC variable in the structure R%USER%OWNER%

class user def char create a character string SIC variable in the structure R%USER%OWNER%

14

CLASS User Section 5. extending the standard class capabilities

5 Extending the standard CLASS capabilities

The previous sections describe how to write and read a User Section in/from a CLASS file. This was
assumed to be done from an external program linked to be CLASS library. However, it is also possible
to do this directly from the standard CLASS executable. The key point is to define all the support
subroutines for the User Section in a binary, dynamically loadable library (say libowner.so), linked to
the CLASS library. libowner.so must also define a specific entry point and its associated definition
subroutines, as described in the document named New package initialization3.

From a standard CLASS session, the command SIC\IMPORT can then be used to load the libowner.so
library and import the User Section capabilities. Such a session will look like:

LAS90> ! First, Class does not know how to read the User Section:
LAS90> DUMP /SECTION USER
USER --
Number of subsections: 1
User Section # 1
Owner: OWNER
Title: TITLE
Version: 1
Data length: 5
Data:
(can not dump)

LAS90>
LAS90> ! Load ’libowner.so’
LAS90> SIC\IMPORT OWNER
LAS90>
LAS90> ! Now Class knows how to read it:
LAS90> DUMP /SECTION USER
USER --
Number of subsections: 1
User Section # 1
Owner: OWNER
Title: TITLE
Version: 1
Data length: 5
Data:
datai4 = 111
datar4 = 222.00000
datar8 = 333.00000000000000
datac4 = ABCD

LAS90>

6 Backward compatibility

Old versions of CLASS (i.e. older than apr11g) will just ignore the user section, if it exists. This section
will be lost in a GET-and-WRITE process.

Starting from apr11g, CLASS is able to detect, load and give basic details about this section. All the
user subsections are preserved and written to the output file, under the restrictions exposed in the next
section.

3contact gildas@iram.fr for more information

15

CLASS User Section 7. portability

7 Portability

The basic behavior of CLASS is that it loads all the user subsections (if any) at read time, and transfer all
of them to the output file at write time. However, the data block of bytes is untyped in the CLASS data
format, so it will make sense to re-read them if and only if the reading machine has the same endianness
(IEEE, EEEI, etc) than the one used at write time. As a consequence the following restrictions apply:

1. at read time, CLASS won’t read the user section if the input file type is not native (i.e. it has not
been written under the same architecture we are reading it),

2. at write time, CLASS won’t write the user section if the output file type is not native (i.e. we
reopened for output a file first written under another architecture).

However, these restrictions have very low chance to occur, since nowadays most (all?) of the computers
have an IEEE architecture.

8 Conclusion

The CLASS developer team provides some flexibility about the CLASS data format through a customiz-
able user section mechanism. This user section can be encoded and decoded only by external programs
linked with the CLASS library and which follows the CLASS API. This is the responsability of the
external programs to ensure the efficiency of their codes. We recommand to observatory who would like
to use this mechanism to contact us (gildas@iram.fr) in order to discuss how to maintain the long term
compatibility of their user section.

16

CLASS User Section A. implementation details for class developers

A Implementation details for CLASS developers

The User Section is added to the CLASS data format. It is defined in the Fortran source as follows:

type user ! Type for all user subsections
sequence
integer(kind=4) :: n ! Number of user subsections
type (user_sub), pointer :: sub(:) ! Array of subsections

end type

An object of type user is added to the type observation structure in the data format. This user object
can contain an arbitrary number of subsections. This allows several user subsections to exist for the same
observation.

Then each of these user subsection is described by the following type:

type user_sub ! Type for each user subsection
sequence
character(len=12) :: owner ! Owner of the subsection
character(len=12) :: title ! Title of the subsection
integer(kind=4) :: version ! Version of the subsection
integer(kind=4) :: ndata ! Length of the data(:) array
integer(kind=4), pointer :: data(:) ! Place holder for information

end type

• A user subsection is identified by a owner and a title. One owner can have several subsections with
each a different title. In other words the couple owner+title is considered as a unique identifier for
a user subsection.

• The version value is a mean for the owner to handle several versions of the same subsection (e.g.
elements have been added in this subsection between two versions).

• The data field is the data itself. It is considered as a block of bytes with no direct meaning for
CLASS. Only the owner is able to decode it.

• Since the data is a dynamic object (i.e. size is not known at compilation time), the ndata value
describes how many 4-bytes blocks are present in the data.

Those two types are private to CLASS. They do not have to be known by the external program.

Finally, this new User Section is different from the other ones in the CLASS data format since its
size is not constant. This implies some modifications in the subroutines. In particular, a whole copy of
observation to observation (obsout = obsin) is forbidden: it must be done in a specific way, taking care
of allocating the pointers in the user section before the copy. For the same reason, the User Section is
not buffered and must be re-read everytime needed on the disk (in other words SET VIRTUAL ON has no
effect).

17

