next up previous contents
Next: Image frequency axis Up: The MODIFY FREQUENCY command Previous: The MODIFY FREQUENCY command   Contents

Signal frequency axis

The signal frequency axis stays constant under this transform. Only its description changes. This can be written as

$\displaystyle \ensuremath{f_\ensuremath{\mathrm{sig}}^{\ensuremath{\mathrm{rest}}}}(\ensuremath{i_{\ensuremath{\mathrm{}}}})$ $\textstyle =$ $\displaystyle \ensuremath{f_\ensuremath{\mathrm{sig,old}}^{\ensuremath{\mathrm{...
...ath{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensuremath{\mathrm{rest}}}}},$ (79)
  $\textstyle =$ $\displaystyle \ensuremath{f_\ensuremath{\mathrm{sig,new}}^{\ensuremath{\mathrm{...
...ath{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\ensuremath{\mathrm{rest}}}}},$ (80)

with
\begin{displaymath}
\ensuremath{\delta \ensuremath{f_\ensuremath{\mathrm{}}^{\e...
...m{\ensuremath{\mathrm{sys}}}}}^{\ensuremath{\mathrm{meas}}}}}.
\end{displaymath} (81)

It is then easy to deduce that only the reference channel must be changed as
\begin{displaymath}
\ensuremath{i_{\ensuremath{\mathrm{0,new}}}}
= \ensuremath...
...emath{\mathrm{sys}}}}}^{\ensuremath{\mathrm{meas}}}} \right) }
\end{displaymath} (82)



Gildas manager 2015-03-01