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Abstract

With the advent of large data sets, the original GILDAS Data Format (for hypercubes
and tables) became outdated due to its initial pure 32-bit implementation. The advent of
new capabilities in interferometers, such as on-the-fly mosaics or polarization, also require
modification in the way information are stored in UV tables.

A new version of the GILDAS Data Format, called GDFV2, was designed and implemented
to answer these challenges. This document details what was done and how it affects both
programmers and users (in particular the backward compatibility aspects).

The new data format is detailed. The public FORTRAN application program interface
(API) which can be used in programs to access the data format is described.

Related documents: GreG documentation, Programming in GILDAS, Task Programming
Manual.
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1 Introduction

The size of the datasets produced by the (sub-)millimeter single-dish and interferometers, in-
cluding the IRAM 30m, Plateau de Bure interferometers and ALMA, experience a tremendous
increase (because of wide bandwidth receivers, spectrometers with thousands of channels, multi-
beams, and/or new observing modes like the interferometric on-the-fly).

In the IRAM 30m context, the new FTS backend delivered during 2011 can produce spectra
of up to 37 275 channels. Combined with On-The-Fly map mode that can contain 100 000’s of
spectra, the number of individual data values can now easily reach 2 billions. The advent of
NOEMA (a major upgrade of PdBI capabilities) will also lead to large data sets.

While clic and class data formats have their own limitations (which will be described in
another document), imaging through gridding and deconvolution uses the GILDAS data format
(hypercubes and tables), which were initially implemented for 32-bit machines. The original
implementation of this Gildas Data Format (hereafter GDFV1) stores the number of (4-bytes)
elements it contains in a signed integer value (integer(4)), which, in IEEE arithmetics, is limited
to 231 − 1 ' 2.109 elements. Replacing this signed integer value (integer(4)) by a signed long
value (integer(8)) would have not helped as the dimensions of the data array are also coded with
a signed integer value. The only valid solution was to also store these dimensions as signed long
values with effect everywhere in the GILDAS code (both kernel and packages). This way 1D
arrays can now contain as much as 263 − 1 ' 9.1018 elements.

In addition to these size limitations, new observing modes, such as polarization or inter-
ferometric On-The-Fly, becomes available. Many new requirements appeared to support these
modes: Support of more than 4 dimensions, new header parameters, more flexible UV tables, ...
Time had come to revise the Gildas Data Format to a new version (hereafter GDFV2).

Section 2 summarizes the GDF design. Sections 3 and 4 describes how the GDF format
can store two main kinds of data, namely hypercubes and tables. Changes for end-users and
programmers are detailed respectively in Sections 5 and 6. Backward compability and other
miscellaneous issues are dealt with in Section 7. For convenience, the data format and the public
application program interface of the GIO library is cut and pasted from the code in Appendix A to
D. Programmers are encouraged to look directly into the source codes for up-to-date information,
see http://www.iram.fr/IRAMFR/GILDAS/.

2 Design of the GILDAS Data Format

The Gildas Data Format and its associated API are based on concept of memory copy. In a
program, access to a GDF file is done by reading into memory the file header and part or all
of the file data. These informations are stored in a Fortran derived type named gildas. This
derived type is described in Appendix A.

It is essentially build on 5 items:

• The derived type strings, which contains character strings from the header;

• The derived type gildas header, which contains essentially a direct copy of the file header
(except for strings), but in the machine native representation;

• The derived type loca, which contains memory related information;

• A few ancillary information about the data, such as the blc and trc (Bottom Left corner
and Top Right corner) which indicate which subset of the data is read, the data filename,
etc...



3 GDF IMAGES 5

• And fortran pointers as placeholders for the data. These are provided for real(4) arrays
only, and only up to Rank 4. They may or may not be used by the programmer, who can
elect to read the data in other Fortran arrays.

While numbers are always represented in the current hardware format in the RAM memory
(e.g., big-endian or little-endian), they may be stored in a different way on the disk. The API
(available is the so-called GIO library) handles the data format conversion (in the data and in
the header) transparently. The data format, although described here, is not intended to be used
directly, but only through the API.

3 GDF Images

The Gildas Data Format can handle different type of data. In GDFV1, these were Images (i.e.,
hypercubes), Tables and UV Tables, but the distinction between Images and Tables was limited,
as any Image could be opened as a Table. In GDFV2, we have improved this distinction by
allowing different kinds of Tables (simple tables, UV Tables, class Tables, VO-like Tables),
which are identified through a specific code in the data header. While provision for class and
VO-like Tables is taken, no application code is yet available.

3.1 Type description

A GDF file is a binary file starting with a header over JP: at least two? header blocks. The data
is found after the header, divided in its own data blocks. We briefly describe here the GDFV2
structure; the changes between GDFV1 and GDFV2 and the backward support are detailed in
the section 3.3.

3.1.1 Header description

The exact header definition can be found in appendix B. In short, it is divided in sections. The
first one, named leading pseudo-section, has a special status because it contains vital information
describing the file format. It (and thus all the GDF files, V1 or V2) starts with 12 specific
characters:

• the 6 firsts are always the word GILDAS (uppercase),

• the 7th is a unique character encoding the system type and the version of the GDF used
(see Table 1),

• the 5 last are a subsequent word used to recognize the kind of data in the file, namely IMAGE
(for standard Gildas images or hypercubes) or UVFIL (for Gildas UV tables).

In GDFV2, this last character string is only a first order information about the file kind. Dis-
tinction between Images, Tables, UV Tables, VO-like Tables, is provided by an integer keywords
(see Table 2). Then follows the data format, the various number of blocks in the file, the version
of the GDF currently in use, and the kind of GDF file.

The following sections are standard ones, named

dimension The dimensions of the data in the file.

blanking The blanking and tolerance values.
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Table 1: GDF encoding of the system and version. Most of the recent computers are little endian
(IEEE) machines. The obsolete system VAX is not supported with GDFV2.

Version IEEE EEEI VAX
1 −1 . 2

2 < > N/A
1 hyphen.

2 underscore.

Table 2: List of kinds available for GDFV2 files (h%gil%type gdf). The values are integers that
should not be used explicitely in the code. The developers must use the associated names.

Name Value Comment
code gdf image 0 Images or hypercubes
code gdf uvold 1 Old UV Data when the weights were inconsistent with the actual noise
code gdf uvt 10 UV Data in “visibility” order
code gdf tuv -code gdf uvt UV Data in channel order (the transposed order)
code gdf table 20 A simple Table, with no information
code gdf vo -code gdf table A simple Table, in the transposed way, as is the case for

Virtual Observatory Tables
code gdf xyt 40 A specific CLASS table (by symmetry with code gdf uvt)
code gdf txy -code gdf xyt A specific CLASS table (by symmetry with code gdf uvt)

extrema The value and position of the minimum and maximum value in the data.

coordinate The axes definition for each dimension, encoded as a 2D array of Ndim (ref,val,inc)
triplets.

description The physical unit of the data and the names of the axes. The first header block
ends here.

position The source description. The second header block starts here.

projection The projection definition.

spectroscopy The description of the spectroscopic axis.

resolution The beam characteristics.

noise The data noise.

astrometry Proper motion parameters.

uv data support for UV tables, e.g. description of extra-columns specific to this kind of tables.

Each section has a parameter describing its length. A zero value means that this section is not
present in the file and/or not filled in memory. For the programmer or the end-user, any other
value means it is enabled (then all the parameters in the section are expected to be filled). In
details, some of the sections have a fixed length for any file (e.g., the length of the blanking
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section is 2+2 4-bytes words) and some have a length that depends on the number of dimensions
in the file (e.g., the length of the coordinate section is 2 + 2× (Ndim × 3) words).

3.1.2 Data description

The kind of data stored is described by the parameter form in the leading information of the
header (see section 3.1.1). In most radioastronomy applications, single precision floats are suffi-
cient: The code fmt r4 is used by default, but double precision floats (fmt r8), standard (fmt i4),
or long integers (fmt i8), and single precision complex (fmt c4) are also supported.

As for the header parameters, the values are stored in the native system of the machine (little
endian or big endian) at the file creation time. The codes detailed in table 1 ensure that the
values can be re-read and updated by any system.

The data is stored in the file in column-major order (Fortran-like). Its dimensions are de-
scribed by the dimension section. While using standard (32 bits) or long (64 bits) integers when
in memory (depending on the hardware capabilities), they are always stored in the file as long
integers. The limit is then 263−1 ' 9.1018 elements per dimension. The total number of elements
in the data uses the same limit. Note that cubes larger than 2 GB (512 mega-elements of single
precision floats) reach the RAM limit of 32 bits machines. This means that the whole data block
cannot fit in memory. Such big data files (> 2 GB) are not supported on 32 bit machines.

The parameters nhb and ndb indicate the number of header blocks, and of data blocks,
respectively. Moreover, the parameter ntb has been provisioned to handle trailing blocks after
the data. All blocks are 512 Bytes long in the current version, but the total number of blocks
nhb+ndb+ntb is rounded (upwards) to a multiple of 16, so that reading can proceed with physical
blocks of 8192 Bytes for better efficiency. A particular effort has also been made here to ensure
that there is no integer(4) limit on the number of Fortran records (blocks) in the file, i.e., all
computations and descriptive numbers related to records use integer(8) values.

3.2 Improvements between GDFV1 and GDFV2

3.2.1 Dimensions

The maximum number of dimensions supported by the GIO library, including the GDF↔FITS
converter is now coded as a unique parameter named GDF MAXDIMS. It has been increased from 4
to 71 between the two GDF versions. The SIC arithmetic engine has been prepared during the
summer 2011 to be able to deal with such data cubes.

In the GDFV1, the number of elements per dimension and the total number of elements in
the cube were stored in a standard integer, limited to 231− 1. In the GDFV2, these elements are
now stored as long integers (under 64 bits machines) and are now limited to 263 − 1.

3.2.2 Transposition of data hypercubes

The transposition engine has been moved to the GMATH library in order to clearly isolate it
from the GIO (for cube transpositions) and SIC (for variable transpositions) libraries. It benefits
several improvements.

• It now also supports up to 7 dimensions (but could support more, independently of GIO or
SIC).

1Up to the 2003 standard, Fortran used the same limit on its arrays. Fortran 2008 has raised it to 15.
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• Timings and duration projections have been added for user feedback when transposing
larges cubes.

• More transposition codes are supported, including all the 3D permutations.

3.2.3 New header parameters or facilities

A number of new objects have been added to the header in addition to all the previous ones.

• For the programmer convenience, 3 pointers to the ref(:), val(:) and inc(:) values
are now available, allowing easy writing of loops on the dimensions. They are real Fortran
pointers to (and not duplicate of) the convert array from the coordinate section2.

• In the extrema section, the min and max value coordinates in the cube are coded in
memory as a MINLOC and MAXLOC arrays with 7 elements. In the disk file, they are coded
as 2 flat (scalar) address in the data.

• The Doppler factor (dopp) and the velocity type (vtyp) have been added to the spec-
troscopy section.

3.3 Backward compatibility

The GDFV2 is an improved and enlarged version of the GDFV1, but the GDFV1 is not directly
compatible with the GDFV2. Changes for programmers and end-users are described in the
sections 5 and 6 respectively.

Reading the GDFV2 file structure from disk with an old version (older than may12) of gildas
is not possible. The file will not be recognized and the following error message will be returned

E-RIS, File xxx.gdf is neither a GILDAS data frame nor a SIMPLE FITS file

Reading the GDFV1 file structure from disk (in any format, including VAX) is still possible.
It is mapped on the fly to a GDFV2 structure in memory. On the other hand, writing GDFV1
is not possible anymore, JP: starting with the ??? version of gildas?.

For convenience, some update operations will remain possible during a transition phase. For
example, extending a GDFV1 data file (via the DEFINE IMAGE A[n] gdfv1.gdf EXTEND com-
mand), is still possible. Updating the extrema is also possible. Similarly, extending a pre-existing
GDFV1 UV Table in clic is allowed. These specific facilities are only provided to ease the tran-
sition between GDFV1 and GDFV2. They will ultimately be removed from the gildas package.
The user is thus encouraged to convert its data files to the new format. The simple SIC procedure
@ gdf convert will do this.

4 GDF UV Tables

4.1 Why a new implementation of the UV Tables in GILDAS?

The UV Tables in the original GDFV1 data format, created in 1989, handled visibilities and their
required associated data parameters in a very similar way as the UVFITS data format used to
export data from the VLA at that epoch. A visibility consisted in

2Variables %gil%refI with I=1,4 (ibid. %gil%valI %gil%incI) which were marked as deprecated, have been
removed. The new pointer arrays must be used instead.



4 GDF UV TABLES 9

• 7 associated data parameters (daps), in fixed order: u, v, w, date, time, first
antenna, second antenna;

• a so-called complex visibility element for each channel, i.e., a real part, an imaginary part,
and a weight.

The daps precede the complex visibilities elements.
The 7 (daps) were real numbers. As Plateau de Bure is a 2-D array with small field of view,

w was most often replaced by the scan number scan for debugging purpose. The number of
channels was simply derived from the visibility size with

Nchan = (VisiSize− 7)/3. (1)

In the early 2000s, an extension was made to this constraining layout by optionally adding two
(real) numbers after the channel values. This was made necessary by the development of the
ALMA simulator to study the impact of the Atacama Compact Array (ACA).

With further developments coming on, such as polarization, on-the-fly mosaicking, multi-
source UVFITS files from CASA,... this scheme was becoming far too constraining. In addition,
UV data sets could readily exceed the 2 GByte size limit of the GDFV1 data format. We thus
decided to take advantage of the changes required to handle large data sets to implement a more
flexible UV data format.

4.2 The new layout

4.2.1 Data Format Identification

UV Tables are now a special subset of GDF files. As any GDF file, they are identified by an
integer code stored in variable h%gil%type gdf (see Table 2) which, for UV Tables must take the
value code gdf uvt or code gdf tuv, depending whether the table is in native order (a visibility
being contiguous in memory) or transposed. For simplicity, we have imposed code gdf tuv =
-code gdf uvt.

The new layout differs in several ways from the older one. In short:

• The daps are no longer at pre-defined positions in the data file, but their positions are
described by the UV table header (cf. the following section for details).

• The complex visibility elements are not necessarily (real, imaginary, weight) triplets, but
contain h%gil%natom elements. For example, a zero spacing UV table from a single-dish
spectrum may have h%gil%natom = 2 (as the imaginary part is 0 in such a case).

• Provision is made to handle polarization data, by indicating the number of Stokes param-
eters in a visibility, h%gil%nstokes.

• The number of frequency channels h%gil%nchan and the number of visibilities h%gil%nvisi
are available independently of the transposition status of the UV data set.

The UV specific information is included in the uvda section of the h%gil header, as described in
appendix B.
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4.2.2 Dap positions and size

The list of possible daps entities is defined in appendix C, with the associated codes used to
tagged them. This list can be extended as required.

The dap position as well as its length can vary. For example, the item dap would be located
at h%gil%column pointer(code uvt item), and it could be a real(4) or real(8) number de-
pending on the value of h%gil%column size(code uvt item).

The daps element can be located either before the complex visibilities, or after, but
not intermixed with them. Accordingly, there can be h%gil%nlead leading columns be-
fore the complex visibility values and h%gil%ntrail trailing columns after. Note that these
number indicates the number of 32-bit columns, so if any of the dap is a 64-bit number
(h%gil%column size(code uvt dap) = 2), nlead+ntrail will be greater than the number of
non-zero values in h%gil%column size(:).

The existence of daps entities of different lengths raise a specific issue when transposing a
UV tables. By default in GILDAS, transpositions are applied on the global data type. For UV
tables, this is fmt r4, i.e. 32 bit entities. Assume we start with a natural (UVT) order, with for
example u a 64 bit quantity. After transposition to TUV order, the first 32 bit of u are in the first
column, and the last 32 bits in the second. This is incoherent. Thus a second transposition is
required on these specific columns to establish the contiguity of the 64-bit values. This is handled
transparently by the GIO library, in gdf transpose as well as in gdf read gildas.

Restriction on the use of real(8) daps The need for this capability was driven to provide
simpler handling of multi-source datasets coming from CASA (which have the RA and Dec of
the sources given for each visibility). However, the handling of such a capability is complex. It
thus is NOT intended to be of general use.

In practice, it will be reserved for RA and Dec daps, when needed, and UV Tables having such
daps are intended to be transformed (split into independent sources, or converted to a multi-field
mosaic with only offsets stored) by dedicated applications. For example, multi-source datasets
coming from CASA would be imported as FITS files, and converted to GILDAS UV Tables by
the GIO library. The resulting GILDAS data sets can then be exploded to single-source UV data
very simply.

Are real(4) U,V,W coordinates sufficient? A peculiar case could be the U,V,W coordi-
nates. With very long baselines (20 km with ALMA) and short wavelengths (0.3 mm), one is
tempted to say that U,V,W should be real(8), as absolute baseline lengths are measured (and
defined by the ultimate antenna stability) to a fraction of wavelength, say 40 µm for example.
40µm/20 km equals 2 10−9 which exceeds the precision of real(4) numbers by 2 digits. So in
principle, real(4) are insufficient.

But this is only true if full astrometric calibration is required. GILDAS UV tables are intended
for imaging purposes, including self-calibration. real(4) precision will only limit the field of view
for a given angular resolution. The phase error due to a (relative) numerical precision δ is given
by

∆φ = 2πuδ∆X = 2π
B

λ
δ∆X. (2)

Hence, we must have

∆X ≤ 0.1λ
2πBδ

, (3)
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to obtain for example a phase error lower than 0.1 radian or 6 degree. Plugging extreme numbers
(δ = 10−7, B = 20 km, λ = 0.3 mm), we obtain ∆X ≤ 2.4 10−3 radian, or 0.13◦, which is quite a
wide field of view.

In summary, the real(4) precision do not allow to perform normal calibration (phase cali-
brators being in general more than a (few) degree(s) away), but it is quite sufficient for even wide
field imaging and self-calibration.

4.2.3 Complex visibilities

The complex visibility values are always real(4). The range of 32-bit columns for the complex
visibility values is indicated by h%gil%fcol and h%gil%lcol. We thus have the following relations
h%gil%fcol = h%gil%nlead+1
h%gil%lcol = h%gil%dim(visi axis) - h%gil%ntrail
h%gil%nlead+h%gil%ntrail = sum (h%gil%column size)
where visi axis is 1 for the “natural” (UVT) order, in which each visibility is contiguous, and
2 for the “transposed” order (TUV).

The UV data format is in fact a generic telescope table format, and can also handle tables
from a Single dish telescope. As weights are often common to all values, the complex visibility can
be made of only 2 “atoms” provided h%gil%column pointer(code uvt weig) 6= 0. It can also
have only 1 atom, if the imaginary part is always 0. The “atom” types are explicitely described
by the h%gil%atoms(1:4) array. Currently defined atom types are

! Visibility atom description
integer(kind=4), parameter :: code_atom_real = 1
integer(kind=4), parameter :: code_atom_imag = 2
integer(kind=4), parameter :: code_atom_weig = 3

Other codes may be added if needed, for example integration time (as Tsys weighting is not
necessarily the thing to do when handling different polarizations).

4.2.4 Polarimetry data

This can be handled in three different ways.

1. In the first mode, a single visibility can have only one polarization state, but differ-
ent visibilities may have different states. The polarization state for each visibility is
defined by h%gil%column pointer(code uvt stok). Possible values are given by the
code stokes ... parameters specified below

! Polarimetry parameters
integer(kind=4), parameter :: code_stokes_i = 0
integer(kind=4), parameter :: code_stokes_q = 1
integer(kind=4), parameter :: code_stokes_u = 2
integer(kind=4), parameter :: code_stokes_v = 3
integer(kind=4), parameter :: code_stokes_ll = 11
integer(kind=4), parameter :: code_stokes_rr = 22
integer(kind=4), parameter :: code_stokes_lr = 12
integer(kind=4), parameter :: code_stokes_rl = 21
integer(kind=4), parameter :: code_stokes_hh = -11
integer(kind=4), parameter :: code_stokes_vv = -22
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integer(kind=4), parameter :: code_stokes_hv = -12
integer(kind=4), parameter :: code_stokes_vh = -21

while antenna polarizations are specified by the code polar ... parameters.

integer(kind=4), parameter :: code_polar_h = -1
integer(kind=4), parameter :: code_polar_v = -2
integer(kind=4), parameter :: code_polar_l = 1
integer(kind=4), parameter :: code_polar_r = 2

This mode is indicated by h%gil%nstokes = 1 and h%gil%order = 0. It will also have
h%gil%nfreq = 0 (see below). Note that there is no provision for mixed (circular / linear)
polarization states.

2. In the second mode, a single visibility can handle several stokes parameters, but Stokes
and Channels are regularly ordered. In this mode, channels are regularly spaced in Fre-
quency, like in single Stokes mode, so no h%gil%freqs array is specified. Stokes param-
eters are also ordered. For every channel, the ordering of Stokes parameters must be the
same. Stokes parameters may vary first, and Frequencies next (the so-called h%gil%order
= code stok chan ordering) or Frequencies may vary first, and Stokes next (the so-called
h%gil%order = code chan stok ordering). Ordering is stored in variable h%gil%order.
Arrays h%gil%stokes(h%gil%nstokes) indicate the Stokes parameter for each frequency
“channel”. This mode is indicated by h%gil%nstokes > 1 and h%gil%order 6= 0, but
still has h%gil%nfreq = 0.

3. In the third, most complex mode, the Stokes parameter can vary arbitrarily within one vis-
ibility. Then each complex visibility element must have a Stokes parameter and a frequency
indication, which are given in the arrays h%gil%stokes and h%gil%freqs respectively, of
size h%gil%nfreq = h%gil%nchan * h%gil%nstokes. As each complex visibility element
is given a specific frequency, this mode can also allow to store irregularly spaced frequency
channels. Such a mode can be convenient for continuum bandwidth synthesis, for exam-
ple. Proper weighting is ensured even though the channel width is not specified, as the
weights are carried along with the Real and Imaginary parts. This mode is indicated by
h%gil%nfreq > 0. h%gil%order is irrelevant in this mode, but should be set to 0.

5 Changes for end-users

The changes for users are minimal. As usual, compatibility has been a major design goal in
GILDAS. The new software can read transparently old GDF files, including old UV tables. For
UV data, it assumes old UV tables contain SCAN as the third dap, as this was the classical
behaviour for tables produced by CLIC.

5.1 Behaviour

The SIC command V\HEADER /EXTREMA and the task EXTREMA have now a different behaviour for
UV Tables than for other GDF data sets. They compute the minimum and maximum baseline
lengths, which is a more useful quantity in this case than the overall extrema of the data array.
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5.2 SIC variables

Some SIC variables mapping the file header (of any kind) have changed:

• head%dim[:] is now a long integer array of dimension 7;

• head%where[1] and head%where[2], the “flat” positions of the maximum and minimum
values have been removed , replaced respectively by head%minloc[:] and head%maxloc[:]
array coordinates in the datacube.

• head%gene is now the length of only the dimension section.

New possibilities linked to the new UV data format are reflected in SIC. The command DEFINE
UV checks more strictly the type of data. It defines the following additional SIC variables

head%basemin Minimum baseline
head%basemax Maximum baseline
head%nvisi Number of visibilities
head%nchan Number of channels
head%nstokes Number of Stokes parameter
head%natom Complex visibility size

In addition, for transposed UV tables, Head%U and Head%V SIC arrays are defined to point towards
the U and V columns.

5.3 New facilities

Some tasks or commands may access indifferently UVT or TUV tables. Implicit transposition is
done when needed. This is currently the case for the command READ of Mapping. See section 3.2.2
for details on the new capabilities of the transposition engine.

6 Changes for programmers

For images and hypercubes, the new format does not provide additional features. So the changes
are limited to the fact that dimensions and sizes are now integer(8) integers. For Tables
however, the new format is much more flexible. It thus is more difficult to handle without
problems. In the context of UV tables, three features can cause unanticipated problems if they
are ignored or mis-used: 1) the possible existence of real(8) dap elements, 2) the variable number
and ordering of daps, and 3) the multiple Stokes values or irregularly spaced frequency channels.
We have tried to simplify the programming in several ways, by providing a more convenient data
structure and a comprehensive API.

6.1 Dealing with GDF files (any kind)

No access the Gildas derived type elements should be done before calling the subroutine
GILDAS NULL, as some elements are dangling pointers.

call gildas_null(hx,type)

where hx is the Gildas header to be initialized, and type an optional character string indicating
the desired type of Gildas data structure. Recognized values are ’IMAGE’, ’TABLE’, ’UVT’, ’TUV’
and ’VOTABLE’, in link to the types described in Table 2. The default is set to ’IMAGE’.

Others changes include:
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Table 3: Renaming of section length variables between the GDFV1 and GDFV2. Absent name
indicate a section that has appeared or disappeared.

Section GDFV1 GDFV2
General gene -
Dimension - dim words
Blanking blan blan words
Extrema extr extr words
Coordinate - coor words
Description desc desc words
Position posi posi words
Projection proj proj words
Spectroscopy spec spec words
Resolution reso reso words
Noise sigm nois words
Astrometry prop astr words
UV Data - uvda words

• The 4 triplets (refj,valj,incj) (with j = 1 to 4) have been removed. For a more generic
approach with 7 dimensions, these 4 × 3 scalars have been replaced by 3 vectors ref(:),
val(:), inc(:) (as described in section 3.2.3).

• Similarly, the 4 pairs (minj,maxj) (with j = 1 to 4) have been removed. These 4 × 2
scalars have been replaced by 2 vectors minloc(:) and maxloc(:).

• Each section length variable has been renamed as detailed in Table 3 (usually by adding
the suffix words to the GDFV1 name). The general section has been split into the 2
sections dimension and coordinate. As described in section 3.1.1, any non-zero value is
now valid to indicate that a section is enabled for reading or writing.

6.2 UV data format usage restrictions

The Gildas UV tables signatures (12 first characters of the binary file) GILDAS UVDAT and
GILDAS UVSOR are not used anymore3. The initialization by GILDAS NULL sets the generic signa-
ture GILDAS UVFIL instead.

To simplify our life, we have imposed the following constraints

• There must be 7 leading daps before the visibilities. These daps have to be in sequence:
code uvt u, v, w or scan, date, time anti, antj. This default ordering of
“mandatory” daps follows the GDFV1 convention.

• The 7 leading daps must be real.

• Usage of real(8) daps is restricted to code uvt ra, code uvt dec.
3This restriction is actually older than the GDFV2 definition.
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6.3 GDF API

Beside the definition of the GDFV2, the GDF API has been revised and simplified. It is listed in
appendix D. As the API provides many tools, some redundancy exists, and one may legitimately
ask which is the best way to do things. As usual, the answer depends on what you are doing,
and also pretty much on the actual size of your UV data sets. Here are some guidelines.

• Developing a new task.
Use the integrated API gdf read gildas as much as possible. It provides consistency
checks which you do not have to duplicate. The drawback is that it reads all data at once.

• Consolidating a task.
If your task requires some consistency checking before doing computations, consider using
the integrated API gdf read gildas with optional argument data = .false., and read
the data later. The drawback is that you have to allocate the data array yourself. This can
be done through gdf allocate.

• Accessing indifferently a .UVT or .TUV data set.
Use the integrated API gdf read uvdataset as much as possible. To do so, you must use
gdf copy header or gdf transpose header to generate the output header from the input
one, depending on whether a transposition is required or not.

• Handling large data sets.
If your application is likely to need to handle large data sets, you should make use of the
abilities of the GDF API to read GDF files by blocks through the blc(:) and trc(:)
arrays. Many operations are actually sequential, so this can use much less memory, and
can be faster than considering the whole data set.

6.4 Obsolete routines

The following routines have been removed.

gdf_blis Change Starting Block. Not used anywhere...
gdf_sris Set Read status. Not used anywhere
gdf_read Obsolete step from the original gdf_readx, y or z
gdf_writ Obsolete step from the original gdf_writx, y or z
gdf_ch Obsolete step from the original gdf_chxy and others...

These ones have become purely internal and been renamed to gio XYis when applicable.

gdf_cris CReate Image Slot: now purely internal gio_cris
Only used by SIC/defvar.f90

gdf_geis GEt Image Slot:
Only used by SIC/defvar.f90

gdf_gems GEt Memory Slot: only the gio_gems equivalent
Only used by SIC/defvar.f90

gdf_reis REad Image Slot: now purely internal
Only used by SIC/defvar.f90

gdf_clis CLose Image Slot: now purely internal
Only used by SIC/defvar.f90

gdf_wris WRose Image Slot: now purely internal
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Only used by SIC/defvar.f90
gdf_exis EXtend Image Slot: now purely internal, use gdf_extend_image

Only used by SIC/defvar.f90
gdf_crws CReate Work Slot: now available by default on any "image".

Only used by SIC/defvar.f90
gdf_fris Use gdf_close_image instead...

Only used by SIC/defvar.f90 & delvar.f90
gdf_frms Free Memory Slot, purely internal now.

One case in SIC/defvar.f90 to be checked...
gdf_lsis List Status of Image Slot

Only used by SIC for debugging.
gdf_rhsec Read Header SECtion: now purely internal
gdf_whsec Write Header SECtion: now purely internal
gdf_get_data Use gdf_read_data instead, with an array allocated (e.g.

by gdf_allocate) and set the loca%addr to point towards
the allocated array.

gdf_read_image
gdf_free_image
gdf_create_mapped_image
gdf_upih

There are a few obsolescent routines, awaiting renaming or deletion.

gdf_stis Test Read/Write status. Only used by SIC.
gdf_geih GEt Image Header. Only used by SIC.
gdf_flih FLush Image Header. Only used by SIC.

7 Miscellaneous and pending items

7.1 Compatibility

In the development phase, the new GIO library is still able to write down the old data format.
Besides the inherent limits of the GDFV1 format (4 dimensions only, < 2 GBytes only), this
means a number of additional restrictions.

For UV tables, in particular, there must be no non-standard column (i.e. the only authorized
non-zero h%gil%column pointer are those in the range 1-7), no polarization information or
irregularly spaced channels.

This facility is provided for debugging only, but not intended to be made available to general
users. It is controlled by the logical name GILDAS HEADERS (which is used by all tasks) and, in
SIC driven programs, also by command SIC HEADERS, so that one can temporarily write in the
old format if needed. This capability will become obsolete once the transition phase to GDFV2
is complete.

7.2 Pending issues

A number of items in the GDFV2 header have been kept for backwards compatibility only. They
may change in the future, when writing the GDFV1 format will no longer be supported.
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• %loca%getvm
This is clearly obsolescent, and perhaps can be removed from the gildas derived type. Only
SIC is likely to use this now. No application do so any longer.

• %loca%addr
This is now only used internally in SIC and by a few routines in CLIC, and one task of
CLASS (map ekh. They are defined by applying locwrd to the appropriate array.

The idea is to suppress this at some point.

• Rank of data set
A problem with the current code is the variable rank of the data. It would be convenient
to use the new Fortran 2003 to have always a rank-1 array declared, and using the Fortran
2003 capability of reshaping through a different rank pointer using this rank-1 array as a
target. e.g. for a 2-D Real image:

h%r2d(1:h%gil%dim(1), h%gil%dim(2)) => h%real

Allocation would be only of the h%real array, so that automatic deallocation could be easily
made when freeing the image. At least, we would always know the data array name when
no interface is required...

Unfortunately, this is only possible with the latest version of the compilers being used so
far (ifort 12.0 and gfortran 4.8.0).

In the meantime, tools have been developped to adjust the rank of an image to the user need
when possible (see rank= optional argument in GDF READ GILDAS and GDF READ HEADER.

A GILDAS Fortran derived type

type :: gildas
sequence
character(len=filename_length) :: file = ’ ’ ! File name
type (strings) :: char !
type (location) :: loca !
type (gildas_header_v2) :: gil !
integer(kind=index_length) :: blc(gdf_maxdims) = 0 ! Bottom left corner
integer(kind=index_length) :: trc(gdf_maxdims) = 0 ! Top right corner
integer(kind=4) :: header = 0 ! Defined / Undefined
integer(kind=4) :: status = 0 ! Last error code
real, pointer :: r1d(:) => null() ! Pointer to 1D data
real(kind=8), pointer :: d1d(:) => null()
integer, pointer :: i1d(:) => null()
real, pointer :: r2d(:,:) => null() ! Pointer to 2D data
real(kind=8), pointer :: d2d(:,:) => null()
integer, pointer :: i2d(:,:) => null()
real, pointer :: r3d(:,:,:) => null() ! Pointer to 3D data
real(kind=8), pointer :: d3d(:,:,:) => null()
integer, pointer :: i3d(:,:,:) => null()
real, pointer :: r4d(:,:,:,:) => null() ! Pointer to 4D data
real(kind=8), pointer :: d4d(:,:,:,:) => null()
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integer, pointer :: i4d(:,:,:,:) => null()
end type gildas

type :: strings
sequence
character(len=12) :: type = ’GILDAS_IMAGE’ ! Image Type (see ITYP)
character(len=12) :: unit = ’ ’ ! Data Units (see IUNI)
character(len=12) :: code(gdf_maxdims) = ’ ’ ! Axis codes (see ICOD)
character(len=12) :: syst = ’ ’ ! Coordinate system (see ISYS)
character(len=12) :: name = ’ ’ ! Source name (see ISOU)
character(len=12) :: line = ’ ’ ! Line name (see ILIN)
! For Even GDF_MAXDIMS only ! character(len=4) :: pad_char

end type strings

type :: location
sequence
integer(kind=address_length) :: addr = 0 ! Address of image
integer(kind=size_length) :: size = 0 ! Size of image
integer :: islo = 0 ! Image Slot number
integer :: mslo = 0 ! Memory Slot number
logical :: read = .true. ! ReadOnly status
logical :: getvm = .false. ! Memory / File indicator
integer(kind=size_length) :: al64 = 0 ! Padding required for alignment

end type location
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B GDFV2 header

type :: gildas_header_v2
sequence

! Trailer:
integer(kind=4) :: ijtyp(3) = 0 ! 1 Image Type
integer(kind=4) :: form = fmt_r4 ! 4 Data format (FMT_xx)
integer(kind=8) :: ndb = 0 ! 5 Number of blocks
integer(kind=4) :: nhb = 2 ! 7 Number of header blocks
integer(kind=4) :: ntb = 0 ! 8 Number of trailing blocks
integer(kind=4) :: version_gdf = code_version_gdf_current ! 9 Data format Version number
integer(kind=4) :: type_gdf = code_gdf_image ! 10 code_gdf_image or code_null
integer(kind=4) :: dim_start = gdf_startdim ! 11 Start offset for DIMENSION, should be odd, >12
integer(kind=4) :: pad_trail
! The maximum value would be 17 to hold up to 8 dimensions.
!
! DIMENSION Section. Caution about alignment...
integer(kind=4) :: dim_words = 2*gdf_maxdims+2 ! at s_dim=17 Dimension section length
integer(kind=4) :: blan_start !! = dim_start + dim_lenth + 2 ! 18 Pointer to next section
integer(kind=4) :: mdim = 4 !or > ! 19 Maximum number of dimensions in this data format
integer(kind=4) :: ndim = 0 ! 20 Number of dimensions
integer(kind=index_length) :: dim(gdf_maxdims) = 0 ! 21 Dimensions
!
! BLANKING
integer(kind=4) :: blan_words = 2 ! Blanking section length
integer(kind=4) :: extr_start ! Pointer to next section
real(kind=4) :: bval = +1.23456e+38 ! Blanking value
real(kind=4) :: eval = -1.0 ! Tolerance
!
! EXTREMA
integer(kind=4) :: extr_words = 6 ! Extrema section length
integer(kind=4) :: coor_start !! = extr_start + extr_words +2 !
real(kind=4) :: rmin = 0.0 ! Minimum
real(kind=4) :: rmax = 0.0 ! Maximum
integer(kind=index_length) :: minloc(gdf_maxdims) = 0 ! Pixel of minimum
integer(kind=index_length) :: maxloc(gdf_maxdims) = 0 ! Pixel of maximum
!
! In data file, minloc and maxloc are not written. Instead, two Integer(8)
! mini and maxi indicate the position of the extrema in a rank-1 model of the data.
!
! COORDINATE Section
integer(kind=4) :: coor_words = 6*gdf_maxdims ! at s_coor Section length
integer(kind=4) :: desc_start !! = coord_start + coord_words +2 !
real(kind=8) :: convert(3,gdf_maxdims) ! Ref, Val, Inc for each dimension
!
! DESCRIPTION Section
integer(kind=4) :: desc_words = 3*(gdf_maxdims+1) ! at s_desc, Description section length
integer(kind=4) :: null_start !! = desc_start + desc_words +2 !
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integer(kind=4) :: ijuni(3) = 0 ! Data Unit
integer(kind=4) :: ijcod(3,gdf_maxdims) = 0 ! Axis names
integer(kind=4) :: pad_desc ! For Odd gdf_maxdims only
!
!
! The first block length is thus
! s_dim-1 + (2*mdim+4) + (4) + (8) + (6*mdim+2) + (3*mdim+5)
! = s_dim-1 + mdim*(2+6+3) + (4+4+2+5+8)
! = s_dim-1 + 11*mdim + 23
! With mdim = 7, s_dim=11, this is 110 spaces
! With mdim = 8, s_dim=11, this is 121 spaces
! MDIM > 8 would NOT fit in one block...
!
! Block 2: Ancillary information
!
! The same logic of Length + Pointer is used there too, although the
! length are fixed. Note rounding to even number for the pointer offsets
! in order to preserve alignement...
!
integer(kind=4) :: posi_start = 1
!
! POSITION
integer(kind=4) :: posi_words = 15 ! Position section length: 15 used + 1 padding
integer(kind=4) :: proj_start !! = s_posi + 16 ! Pointer to next section
integer(kind=4) :: ijsou(3) = 0 ! 75 Source name
integer(kind=4) :: ijsys(3) = 0 ! 71 Coordinate System (moved from Description section)
real(kind=8) :: ra = 0.d0 ! 78 Right Ascension
real(kind=8) :: dec = 0.d0 ! 80 Declination
real(kind=8) :: lii = 0.d0 ! 82 Galactic longitude
real(kind=8) :: bii = 0.d0 ! 84 latitude
real(kind=4) :: epoc = 0.0 ! 86 Epoch of coordinates
real(kind=4) :: pad_posi
!
! PROJECTION
integer(kind=4) :: proj_words = 9 ! Projection length: 9 used + 1 padding
integer(kind=4) :: spec_start !! = proj_start + 12
real(kind=8) :: a0 = 0.d0 ! 89 X of projection center
real(kind=8) :: d0 = 0.d0 ! 91 Y of projection center
real(kind=8) :: pang = 0.d0 ! 93 Projection angle
integer(kind=4) :: ptyp = p_none ! 88 Projection type (see p_... codes)
integer(kind=4) :: xaxi = 0 ! 95 X axis
integer(kind=4) :: yaxi = 0 ! 96 Y axis
integer(kind=4) :: pad_proj
!
! SPECTROSCOPY
integer(kind=4) :: spec_words = 14 ! Spectroscopy length: 14 used
integer(kind=4) :: reso_start !! = spec_words + 16
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real(kind=8) :: fres = 0.d0 !101 Frequency resolution
real(kind=8) :: fima = 0.d0 !103 Image frequency
real(kind=8) :: freq = 0.d0 !105 Rest Frequency
real(kind=4) :: vres = 0.0 !107 Velocity resolution
real(kind=4) :: voff = 0.0 !108 Velocity offset
real(kind=4) :: dopp = 0.0 ! Doppler factor
integer(kind=4) :: faxi = 0 !109 Frequency axis
integer(kind=4) :: ijlin(3) = 0 ! 98 Line name
integer(kind=4) :: vtyp = vel_unk ! Velocity type (see vel_... codes)
!
! RESOLUTION
integer(kind=4) :: reso_words = 3 ! Resolution length: 3 used + 1 padding
integer(kind=4) :: nois_start !! = reso_words + 6
real(kind=4) :: majo = 0.0 !111 Major axis
real(kind=4) :: mino = 0.0 !112 Minor axis
real(kind=4) :: posa = 0.0 !113 Position angle
real(kind=4) :: pad_reso
!
! NOISE
integer(kind=4) :: nois_words = 2 ! Noise section length: 2 used
integer(kind=4) :: astr_start !! = s_nois + 4
real(kind=4) :: noise = 0.0 ! 115 Theoretical noise
real(kind=4) :: rms = 0.0 ! 116 Actual noise
!
! ASTROMETRY
integer(kind=4) :: astr_words = 3 ! Proper motion section length: 3 used + 1 padding
integer(kind=4) :: uvda_start !! = s_astr + 4
real(kind=4) :: mura = 0.0 ! 118 along RA, in mas/yr
real(kind=4) :: mudec = 0.0 ! 119 along Dec, in mas/yr
real(kind=4) :: parallax = 0.0 ! 120 in mas
real(kind=4) :: pad_astr
! real(kind=4) :: pepoch = 2000.0 ! 121 in yrs ?
!
! UV_DATA information
integer(kind=4) :: uvda_words = 18+2*code_uvt_last ! Length of section: 18 used + codes
integer(kind=4) :: void_start !! = s_uvda + l_uvda + 2
integer(kind=4) :: version_uv = code_version_uvt_current ! 1 version number.
integer(kind=4) :: nchan = 0 ! 2 Number of channels
integer(kind=8) :: nvisi = 0 ! 3-4 Independent of the transposition status
integer(kind=4) :: nstokes = 0 ! 5 Number of polarizations
integer(kind=4) :: natom = 0 ! 6. 3 for real, imaginary, weight. 1 for real.
real(kind=4) :: basemin = 0. ! 7 Minimum Baseline
real(kind=4) :: basemax = 0. ! 8 Maximum Baseline
integer(kind=4) :: fcol ! 9 Column of first visibility information
integer(kind=4) :: lcol ! 10 Column of last visibility information
! The number of information per channel can be obtained by
! (lcol-fcol+1)/(nchan*natom)
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! so this could allow to derive the number of Stokes parameters
! Leading data at start of each visibility contains specific information
integer(kind=4) :: nlead = 7 ! 11 Number of leading informations
! Trailing data at end of each visibility may hold additional information
integer(kind=4) :: ntrail = 0 ! 12 Number of trailing informations
!
! Leading / Trailing information codes have been specified before
integer(kind=4) :: column_pointer(code_uvt_last) = code_null ! Pointers to columns...
integer(kind=4) :: column_size(code_uvt_last) = 0 ! Number of columns for each
! In the data, we instead have the codes for each column
! integer(kind=4) :: column_codes(nlead+ntrail) ! Column code for each ...
! integer(kind=4) :: column_types(nlead+ntrail) /0,1,2/ ! Number of columns for each: 1 real*4, 2 real*8
! Leading / Trailing information codes
!
integer(kind=4) :: order = 0 ! 13 Stoke/Channel ordering
integer(kind=4) :: nfreq = 0 ! 14 ! 0 or = nchan*nstokes
integer(kind=4) :: atoms(4) = 0 ! 18 Atoms description
!
real(kind=8), pointer :: freqs(:) => null() ! (nchan*nstokes) = 0d0
integer(kind=4), pointer :: stokes(:) => null() ! (nchan*nstokes) or (nstokes) = code_stoke

end type gildas_header_v2
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C UV tables column codes

! Column kind of the uv tables
integer(kind=4), parameter :: code_type_r4 = 1 ! Real number
integer(kind=4), parameter :: code_type_r8 = 2 ! Doubleprecision number
!
integer(kind=4), parameter :: code_follow = -1 ! Column is a follower of the previous one
integer(kind=4), parameter :: code_uvt_u = 1 ! u
integer(kind=4), parameter :: code_uvt_v = 2 ! v
integer(kind=4), parameter :: code_uvt_w = 3 ! w
integer(kind=4), parameter :: code_uvt_date = 4 ! Date
integer(kind=4), parameter :: code_uvt_time = 5 ! Time
integer(kind=4), parameter :: code_uvt_anti = 6 ! Antenna i
integer(kind=4), parameter :: code_uvt_antj = 7 ! Antenna j
integer(kind=4), parameter :: code_uvt_scan = 8 ! Scan number
integer(kind=4), parameter :: code_uvt_fobs = 9 ! Observatory frequency
integer(kind=4), parameter :: code_uvt_loff = 10 ! Phase center offset
integer(kind=4), parameter :: code_uvt_moff = 11 ! Phase center offset
integer(kind=4), parameter :: code_uvt_xoff = 12 ! X Pointing Offset
integer(kind=4), parameter :: code_uvt_yoff = 13 ! Y Pointing Offset
integer(kind=4), parameter :: code_uvt_stok = 14 ! Polarization state
integer(kind=4), parameter :: code_uvt_el = 15 ! Elevation
integer(kind=4), parameter :: code_uvt_ha = 16 ! Hour angle
integer(kind=4), parameter :: code_uvt_para = 17 ! Parallactic angle
integer(kind=4), parameter :: code_uvt_int = 18 ! Integration time
integer(kind=4), parameter :: code_uvt_weig = 19 ! Weight column for SD
integer(kind=4), parameter :: code_uvt_xofi = 20 ! Pointing error Ant I
integer(kind=4), parameter :: code_uvt_yofi = 21 ! Pointing error Ant I
integer(kind=4), parameter :: code_uvt_xofj = 22 ! Pointing error Ant J
integer(kind=4), parameter :: code_uvt_yofj = 23 ! Pointing error Ant J
integer(kind=4), parameter :: code_uvt_ra = 24 ! RA of reference
integer(kind=4), parameter :: code_uvt_dec = 25 ! DEC of reference
integer(kind=4), parameter :: code_uvt_last = 25 ! Last uvt code
! currently up to 25 simultaneously present codes can fit in a single block
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D GDF API and programming tools

D.1 GILDAS NULL

The subroutine GILDAS NULL is the principal initialization routine for GILDAS data structures.
No access to the Gildas derived type elements should be done before calling this routine, as
some elements are dangling pointers. Subroutine GILDAS ERROR will return an error and issue a
message if the gildas data structure has not been initialized. 4

interface
subroutine gildas_null(hx, type)

use image_def
!---------------------------------------------------------------------
! @ public
! GDF API
! Initialize a Gildas structure and reset its content
! TYPE can be: ’IMAGE’ (default), ’TABLE’, ’UVT’, ’TUV’, ’VOTABLE’
!---------------------------------------------------------------------
type(gildas), intent(out), target :: hx ! Gildas structure
character(len=*), intent(in), optional :: type

end subroutine gildas_null
end interface

It has an optional argument named type, which indicates which type of Gildas data structure is
used. The default is ’IMAGE’.

Calling GILDAS NULL(h, type = ’UVT’) will set appropriate defaults for UV data set in
natural order, while GILDAS NULL(h, type = ’TUV’) should be used for the transposed order.
Existing pointers are nullified, and then associated to their appropriate target.

D.2 GDF READ HEADER

Subroutine GDF READ HEADER reads the header of the requested Gildas data set (specified in
imag%file), and optionally change its rank.

subroutine gdf_read_header(imag,error,rank)
use gio_dependencies_interfaces
use gio_interfaces, except_this=>gdf_read_header
use image_def
use gbl_message
!---------------------------------------------------------------------
! @ public
! GDF API
! Read an image header from the requested file
!---------------------------------------------------------------------
type(gildas), intent(inout) :: imag ! Image structure
logical, intent(out) :: error ! Error flag
integer, intent(in), optional :: rank ! Desired rank

4However, the whole GIO library can still work consistently on unitialized gildas data structure, as it never
accesses the pointer elements.
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If the optional rank=value argument is present, the header is modified according to the
following rules. value < 0 means the image must have hx%gil%ndim=-rank. value = 0 means
trim all possible trailine degenerate dimensions, i.e. set hx%gil%ndim to the last dimension > 1.
value > 0 means extend or trim rank to desired value.

D.3 GDF TRIM HEADER

Subroutine GDF TRIM HEADER changes the rank of an image header. See GDF READ HEADER for
interpretation of the rank.

subroutine gdf_trim_header(imag,rank,error)
use gio_dependencies_interfaces
use gio_interfaces, only : gio_message
use image_def
use gbl_message
!---------------------------------------------------------------------
! @ public
! GDF API
! Read an image header from the requested file
!---------------------------------------------------------------------
type(gildas), intent(inout) :: imag ! Image structure
integer(4), intent(in) :: rank ! Requested Rank
logical, intent(out) :: error ! Error flag

D.4 GDF ALLOCATE

The gdf allocate(header,error) routine returns the appropriate Header%XnD pointer, de-
pending on the data type and rank. It uses the %blc, %trc information to derive the proper
size, given the data rank in %gil%ndim.

D.5 GDF COPY HEADER

Subroutine GDF COPY HEADER copy the information from one header to another. The output
header must have been initialized by a call to GILDAS NULL before.

interface
subroutine gdf_copy_header(input,output, error)

use image_def
!---------------------------------------------------------------------
! @ public
! Copy (a part of) the input header into the output header.
! Since the arguments are the full gildas type, ’output’ must be
! inout to avoid resetting the data part of the type. This implies that
! the other header components must also have been set/initialized
! before.
!---------------------------------------------------------------------
type (gildas), intent(inout), target :: input ! Input header
type (gildas), intent(inout), target :: output ! Output header
logical, intent(out) :: error
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end subroutine gdf_copy_header
end interface

The behaviour depends on the type of headers, defined as h%gil%type gdf. If the desti-
nation header is of same type as the source header, which means the same absolute value of
h%gil%type gdf, all the relevant information is copied, including the source type, as this indi-
cates the transposition status. If the destination header has a different type, only the common
information is copied, so that the information which is only present in the destination header is
preserved. This typically happens when copying an Image header to a UV header or vice-versa.

The routine may return an error. This is a change of interface compared to GILDAS V1.

D.6 GDF RANGE

Function gdf range converts an input range to a valid output one given a total number of items.
It is a generic function, accepting any kind of integers.

interface gdf_range
function gdf_range(nc,nchan)

use gbl_message
!---------------------------------------------------------------------
! @ public
! GDF API
! Return a range of (pixel / channel / items)
! Any Kind of integers is accepted
!---------------------------------------------------------------------
integer(4) :: gdf_range ! Intent(out) 0 if no error
integer(kind=*), intent(in) :: nchan ! The actual number of channels
integer(kind=*), intent(inout) :: nc(2) ! The interpreted range of selected channels

end function gdf_range
end interface

Positive values of nc indicate an absolute channel number, while negative values are offsets
from the last channel. Null values default to 1 (first channel) and nchan (last channel) respec-
tively.

D.7 GDF READ GILDAS

Subroutine gdf read gildas is the basic entry point to read a GILDAS data file into a GILDAS
data structure. Based on the hx%gil%type gdf code (previously set by an appropriate call to
gildas null or inherited by gdf copy header or gdf transpose header, it will perform different
operations.

interface
subroutine gdf_read_gildas(hx,name,ext,error, rank, data)

use image_def
use gbl_message
!-----------------------------------------------------------------
! @ public
! Read a Gildas Data File of name "name" and extention "ext"
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! and return it into the "hx" Gildas data type.
!
! Desired Form & Rank can be specified: an error will happen
! in case of mismatch.
!-----------------------------------------------------------------
type (gildas), intent(inout) :: hx ! Gildas data type
character(len=*), intent(in) :: name ! Filename
character(len=*), intent(in) :: ext ! Extension
logical, intent(out) :: error ! Error flag
integer, intent(in), optional :: rank
logical, intent(in), optional :: data

end subroutine gdf_read_gildas
end interface

Read a GILDAS data set and (optionally) return data from it.
Optional argument data is a logical indicating whether the data is read (data=.true., which

is the default) or only the header is read (data=.false.). The data is returned in the hx%XNd
where X = r, d or i according to the data type, and N = 1-4 is the data rank. The array is
allocated by the routine.

Optional argument rank=value indicates the desired rank of the result. value<0 means the
image must have an intrinsic rank equal to -value. value>0 means that the data must be
trimmed of its last, or extended by, (degenerate) dimensions to match the requested rank; an
error is returned if not possible. value=0 means the header should take the rank from file, but
the data should be returned as a 1D array.

Note: if preset on input, hx%gil%form indicates the desired type of values. An error will
occur in case of mismatch: no conversion between real or integers is performed.

For UV data sets (in UVT or TUV order), it reads the header and the data according to the
file layout.

D.8 GDF READ UVDATASET

subroutine gdf read uvdataset(huvin,huvou,nc,duvou,error)
Subroutine gdf read uvdaset is a somewhat more elaborate entry point which performs the

possible layout conversion.

interface
subroutine gdf_read_uvdataset(huvin,huvou,nc,duvou,error)

use image_def
use gio_image
use gbl_message
use gbl_format
!---------------------------------------------------------------------
! @ public
! Read UV data and Associated parameters from a GILDAS UV
! structure and place it in the specified array
!---------------------------------------------------------------------
type(gildas), intent(inout) :: huvin ! Input UV header (data file)
type(gildas), intent(inout) :: huvou ! Output UV header (program used)
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integer(kind=4), intent(in) :: nc(2) ! Selected channels
real(kind=4), intent(inout) :: duvou(huvou%gil%dim(1),huvou%gil%dim(2)) ! Data
logical, intent(out) :: error ! Flag

end subroutine gdf_read_uvdataset
end interface

huvin must contain the data file header, while huvou can have a different layout. Layout
can differ in several ways: different column pointer and / or column size arrays, transposition
order (i.e. we may have huvou%gil%type gdf = - huvin%gil%type gdf). Transposition is done
on-the-fly if needed. The two headers must otherwise be conforming.

nc(2) indicate the channel range to be retrieved. This is performed by calling function
gdf range(nc, huvin%gil%nchan) (or on a local copy, as nc is intent(in) only).

If the destination requires information not present in the source, or vice versa, an error is
raised and a status code returned in huvou%status TO BE CODED.... It is up to the caller
to react accordingly.

The routine currently assumes only one polarization. Polarization handling still
needs further debate.

D.9 GDF READ UVONLY CODES

subroutine gdf_read_uvonly_codes(huv,uv,codes,ncode,error)
use gio_interfaces, except_this=>gdf_read_uvonly_codes
use image_def
use gio_image
use gbl_message
!---------------------------------------------------------------------
! @ public
! GDF API
! Read the Time-Baseline data of a GILDAS UV structure
! UVT and TUV order are allowed...
!---------------------------------------------------------------------
type (gildas), intent(inout) :: huv ! UV table descriptor
integer(4), intent(in) :: ncode ! Number of codes
integer(4), intent(in) :: codes(ncode) ! Desired codes
real(kind=4), intent(out) :: uv(ncode,huv%gil%nvisi) ! Return Values
logical, intent(out) :: error ! Flag

Subroutine gdf read uvonly codes allows to read only the columns containing the requested
codes. On input, UVT and TUV order are supported.

For example, if the requested codes contains

code uvt u, code uvt v

, it would return the U and V values for all visibilities (in this example, gdf read uvonly would
return the same information, but in a transposed way).

D.10 GDF SETUV

Subroutine gdf setuv verifies and finalizes a UV header. It computes the secondary parameters
%nlead, %ntrail, %fcol and %lcol from the primary information present in %column pointer,
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%column size, %nchan and %nstokes. It also verifies the conformance to the programming
restrictions.

interface
subroutine gdf_setuv (hx,error)

use image_defgrep
use gbl_message
!---------------------------------------------------------------------
! @ public
! Define the UV section consistently.
! It could also define the column_types and column_codes if needed
!---------------------------------------------------------------------
type(gildas), intent(inout) :: hx
logical, intent(out) :: error

end subroutine gdf_setuv
end interface

D.11 Other less used or too specific or hidden routines... To be debated

interface
subroutine gdf_get_baselines (mine,error)

use image_def
use gbl_message
use gbl_format
!---------------------------------------------------------------------
! @ public
! GDF API
! Compute the baseline range from a Virtual Memory UV data (one with the
! appropriate address field). Note that the address field
! can have been set independently of the %getvm status
!---------------------------------------------------------------------
type (gildas), intent(inout) :: mine !
logical, intent(out) :: error !

end subroutine gdf_get_baselines
end interface

Computes the min max of the baseline lengths. Used to update the header.

interface
subroutine gdf_read_uvall (huv,array,error)

use gio_interfaces
use image_def
use gio_image
use gbl_message
use gbl_format
!---------------------------------------------------------------------
! @ no-interface (because of argument type mismatch)
! Read data from a GILDAS UV structure and
! place it in the specified array
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!---------------------------------------------------------------------
type(gildas), intent(inout) :: huv ! Image descriptor
real(kind=4), intent(inout) :: array(*) ! Data
logical, intent(out) :: error ! Flag

end subroutine gdf_read_uvall
end interface

Read the full UV data set (all channels included). Implicitely used by gdf read data when
possible.

interface
subroutine gdf_write_uvall(huv,array,error)

use gio_interfaces
use image_def
use gio_image
use gbl_message
!---------------------------------------------------------------------
! @ no-interface (Yet...)
! Write UV data to an image file specified
! by its image structure. The image must have been
! opened for write before
!---------------------------------------------------------------------
type(gildas), intent(inout) :: huv ! Image descriptor
real, intent(inout) :: array(*) ! Data
logical, intent(out) :: error ! Flag

end subroutine gdf_write_uvall
end interface

Write the full UV data set (all channels included). Implicitely used by gdf write data when
possible.

interface
subroutine gdf_read_uvonly(huv,uv,error)

use image_def
use gio_image
use gbl_message
!---------------------------------------------------------------------
! @ public
! GDF API
! Read the UV data of a GILDAS UV structure
! UVT and TUV order are allowed...
!---------------------------------------------------------------------
type (gildas), intent(inout) :: huv ! UV table descriptor
real(kind=4), intent(out) :: uv(huv%gil%nvisi,2) ! Return U,V coordinates
logical, intent(out) :: error ! Flag

end subroutine gdf_read_uvonly
end interface

Read only the U and V values.
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